skip to main content


Search for: All records

Creators/Authors contains: "Wang, Jingyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    A quantitative understanding of the nanoscale piezoelectric property will unlock many application potentials of the electromechanical coupling phenomenon under quantum confinement. In this work, we present an atomic force microscopy- (AFM-) based approach to the quantification of the nanometer-scale piezoelectric property from single-crystalline zinc oxide nanosheets (NSs) with thicknesses ranging from 1 to 4 nm. By identifying the appropriate driving potential, we minimized the influences from electrostatic interactions and tip-sample coupling, and extrapolated the thickness-dependent piezoelectric coefficient ( d 33 ). By averaging the measured d 33 from NSs with the same number of unit cells in thickness, an intriguing tri-unit-cell relationship was observed. From NSs with 3 n unit cell thickness ( n = 1 , 2, 3), a bulk-like d 33 at a value of ~9 pm/V was obtained, whereas NSs with other thickness showed a ~30% higher d 33 of ~12 pm/V. Quantification of d 33 as a function of ZnO unit cell numbers offers a new experimental discovery toward nanoscale piezoelectricity from nonlayered materials that are piezoelectric in bulk. 
    more » « less
  3. null (Ed.)
    Cellulose-based materials have gained increasing attention for the development of low cost, eco-friendly technologies, and more recently, as functional materials in triboelectric nanogenerators (TENGs). However, the low output performance of cellulose-based TENGs severely restricts their versatility and employment in emerging smart building and smart city applications. Here, we report a high output performance of a commercial cellulosic material-based energy harvesting floor (CEHF). Benefiting from the significant difference in the triboelectric properties between weighing and nitrocellulose papers, high surface roughness achieved by a newly developed mechanical exfoliation method, and large overall contact area via a multilayered device structure, the CEHF (25 cm × 15 cm × 1.2 cm) exhibits excellent output performance with a maximum output voltage, current, and power peak values of 360 V, 250 μA, and 5 mW, respectively. It can be directly installed or integrated with regular flooring products to effectively convert human body movements into electricity and shows good durability and stability. Moreover, a wireless transmission sensing system that can produce a 1:1 footstep-to-signal (transmitted and received) ratio is instantaneously powered by a TENG based entirely on cellulosic materials for the first time. This work provides a feasible and effective way to utilize commercial cellulosic materials to construct self-powered wireless transmission systems for real-time sensing applications. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Satellite‐based post‐tornado assessments have been widely used for the detection of tornado tracks, which heavily relies on the identification of vegetation changes through observations at visible and near‐infrared channels. During the deadly 10–11 December 2021 tornado outbreak, a series of violent tornadoes first touched down over northeastern Arkansas, an area dominated by cropland with rare vegetation coverage in winter. Through the examination of Moderate Resolution Imaging Spectroradiometer multi‐spectral observations, this study reveals significant scars on shortwave infrared channels over this region, but none are captured by visible and near‐infrared channels. The dominant soil type is aquert (one of vertisols), whose high clay content well preserves the severe changes in soil structure during the tornado passage, when the topmost soil layer was removed and underlying soil with higher moisture content was exposed to the air. This study suggests a quick post‐tornado assessment method over less vegetated area by using shortwave infrared channels.

     
    more » « less
  6. This paper presents the development and preliminary implementation of a multi-scale material and mechanics education module to improve undergraduate solid mechanics education. We experimentally characterize 3D printed and conventional wrought aluminum samples and collect structural images and perform testing at the micro- and macro- scales. At the micro-scale, we focus on the visualization of material’s grain structures. At the macro-scale, standard material characterization following ASTM standards is conducted to obtain the macroscopic behavior. Digital image correlation technology is employed to obtain the two-dimensional strain field during the macro-scale testing. An evaluation of student learning of solid mechanics and materials behavior concepts is carried out to establish as baseline before further interventions are introduced. The established multi-scale mechanics and materials testing dataset will be also used in a broad range of undergraduate courses, such as Solid Mechanics, Design of Mechanical Components, and Manufacturing Processes, to inform curricular improvement. The successful implementation of this multi-scale approach for education is likely to enhance students’ understanding of abstract solid mechanics theories and establish links between mechanics and materials concepts. More broadly, this approach will assist advanced solid mechanics education in undergraduate engineering education throughout the country. 
    more » « less
  7. This paper presents the development and preliminary implementation of a multi-scale material and mechanics education module to improve undergraduate solid mechanics education. We experimentally characterize 3D printed and conventional wrought aluminum samples and collect structural images and perform testing at the micro- and macro- scales. At the micro-scale, we focus on the visualization of material’s grain structures. At the macro-scale, standard material characterization following ASTM standards is conducted to obtain the macroscopic behavior. Digital image correlation technology is employed to obtain the two-dimensional strain field during the macro-scale testing. An evaluation of student learning of solid mechanics and materials behavior concepts is carried out to establish as baseline before further interventions are introduced. The established multi-scale mechanics and materials testing dataset will be also used in a broad range of undergraduate courses, such as Solid Mechanics, Design of Mechanical Components, and Manufacturing Processes, to inform curricular improvement. The successful implementation of this multi-scale approach for education is likely to enhance students’ understanding of abstract solid mechanics theories and establish links between mechanics and materials concepts. More broadly, this approach will assist advanced solid mechanics education in undergraduate engineering education throughout the country. 
    more » « less